continuous timing - определение. Что такое continuous timing
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое continuous timing - определение

PROCESS OF ALTERING THE TIMING OF A VALVE LIFT EVENT
Variable Valve Timing; Continuous variable valve timing; CVVT; Continuously variable valve timing; Variable valve actuation; Intake cam phaser; DCVCP; Continuous variable cam phasing; Continuous cam phasing; VVT engine
  • Hyundai T-GDI engine]]
Найдено результатов: 591
Continuous-time stochastic process         
STOCHASTIC PROCESS FOR WHICH THE INDEX VARIABLE TAKES A CONTINUOUS SET OF VALUES, AS CONTRASTED WITH A DISCRETE-TIME PROCESS FOR WHICH THE INDEX VARIABLE TAKES ONLY DISTINCT VALUES
Continuous-time process
In probability theory and statistics, a continuous-time stochastic process, or a continuous-space-time stochastic process is a stochastic process for which the index variable takes a continuous set of values, as contrasted with a discrete-time process for which the index variable takes only distinct values. An alternative terminology uses continuous parameter as being more inclusive.
Continuous function         
  • The graph of a [[cubic function]] has no jumps or holes. The function is continuous.
  • 1=exp(0) = 1}}
  • section 2.1.3]]).
  • 1=''ε'' = 0.5}}.
  • Riemann sphere]] is often used as a model to study functions like the example.
  • The graph of a continuous [[rational function]]. The function is not defined for <math>x = -2.</math> The vertical and horizontal lines are [[asymptote]]s.
  • For a Lipschitz continuous function, there is a double cone (shown in white) whose vertex can be translated along the graph, so that the graph always remains entirely outside the cone.
  • oscillation]].
  • The sinc and the cos functions
  • Point plot of Thomae's function on the interval (0,1). The topmost point in the middle shows f(1/2) = 1/2.
  • thumb
FUNCTION SUCH THAT THE PREIMAGE OF AN OPEN SET IS OPEN
Continuity property; Continuous map; Continuous function (topology); Continuous (topology); Continuous mapping; Continuous functions; Continuous maps; Discontinuity set; Noncontinuous function; Discontinuous function; Continuity (topology); Continuous map (topology); Sequential continuity; Stepping Stone Theorem; Continuous binary relation; Continuous relation; Topological continuity; Right-continuous; Right continuous; Left continuous; Left-continuous; C^1; Continuous fctn; Cts fctn; E-d definition; Continuous variation; Continuity space; Continuous space; Real-valued continuous functions; Left-continuous function; Right-continuous function; Left- or right-continuous function; Continuity at a point; Continuous at a point; Continuous extension
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as discontinuities.
continuous function         
  • The graph of a [[cubic function]] has no jumps or holes. The function is continuous.
  • 1=exp(0) = 1}}
  • section 2.1.3]]).
  • 1=''ε'' = 0.5}}.
  • Riemann sphere]] is often used as a model to study functions like the example.
  • The graph of a continuous [[rational function]]. The function is not defined for <math>x = -2.</math> The vertical and horizontal lines are [[asymptote]]s.
  • For a Lipschitz continuous function, there is a double cone (shown in white) whose vertex can be translated along the graph, so that the graph always remains entirely outside the cone.
  • oscillation]].
  • The sinc and the cos functions
  • Point plot of Thomae's function on the interval (0,1). The topmost point in the middle shows f(1/2) = 1/2.
  • thumb
FUNCTION SUCH THAT THE PREIMAGE OF AN OPEN SET IS OPEN
Continuity property; Continuous map; Continuous function (topology); Continuous (topology); Continuous mapping; Continuous functions; Continuous maps; Discontinuity set; Noncontinuous function; Discontinuous function; Continuity (topology); Continuous map (topology); Sequential continuity; Stepping Stone Theorem; Continuous binary relation; Continuous relation; Topological continuity; Right-continuous; Right continuous; Left continuous; Left-continuous; C^1; Continuous fctn; Cts fctn; E-d definition; Continuous variation; Continuity space; Continuous space; Real-valued continuous functions; Left-continuous function; Right-continuous function; Left- or right-continuous function; Continuity at a point; Continuous at a point; Continuous extension
A function f : D -> E, where D and E are cpos, is continuous if it is monotonic and f (lub Z) = lub f z | z in Z for all directed sets Z in D. In other words, the image of the lub is the lub of any directed image. All additive functions (functions which preserve all lubs) are continuous. A continuous function has a {least fixed point} if its domain has a least element, bottom (i.e. it is a cpo or a "pointed cpo" depending on your definition of a cpo). The least fixed point is fix f = lub f^n bottom | n = 0..infinity (1994-11-30)
Continuous-time Markov chain         
  • Transition graph with transition probabilities, exemplary for the states 1, 5, 6 and 8. There is a bidirectional secret passage between states 2 and 8.
STOCHASTIC PROCESS THAT SATISFIES THE MARKOV PROPERTY (SOMETIMES CHARACTERIZED AS "MEMORYLESSNESS")
Continuous time Markov chain; Ctmc; CTMC; Continuous-time Markov Process; Continuous-time Markov process
A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to the least value of a set of exponential random variables, one for each possible state it can move to, with the parameters determined by the current state.
Continuous production         
  • Continuous production line for making spaghetti
PRODUCTION METHOD WITHOUT INTERRUPTION
Continuous process; Continuous industrial process
Continuous production is a flow production method used to manufacture, produce, or process materials without interruption. Continuous production is called a continuous process or a continuous flow process because the materials, either dry bulk or fluids that are being processed are continuously in motion, undergoing chemical reactions or subject to mechanical or heat treatment.
Continuous-time quantum walk         
QUANTUM RANDOM WALK DICTATED BY A TIME-VARYING UNITARY MATRIX THAT RELIES ON THE HAMILTONIAN
Continuous-Time Quantum Walk; CTQW
A continuous-time quantum walk (CTQW) is a quantum walk on a given (simple) graph that is dictated by a time-varying unitary matrix that relies on the Hamiltonian of the quantum system and the adjacency matrix. The concept of a CTQW is believed to have been first considered for quantum computation by Edward Farhi and Sam Gutmann; since many classical algorithms are based on (classical) random walks, the concept of CTQWs were originally considered to see if there could be quantum analogues of these algorithms with e.
Discrete time and continuous time         
FRAMEWORKS FOR MODELING VARIABLES THAT EVOLVE OVER TIME
Discrete time; Discrete-time; Discrete-time signal; Continuous-time; Continuous time; Discrete-time system; Continuous signal; Discrete (signal); Continuous-time signal; Descrete-time signal; Discreet signal; Discreet-time signal; Discrete signal processing; Continuous Time Signal; Discrete signal; Continuous time and discrete time; Discrete-time and continuous-time variables
In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled.
Continuous-time random walk         
RANDOM WALK WITH RANDOM TIME BETWEEN JUMPS
Draft:Continuous-time Random Walk; Continuous-time Random Walk
In mathematics, a continuous-time random walk (CTRW) is a generalization of a random walk where the wandering particle waits for a random time between jumps. It is a stochastic jump process with arbitrary distributions of jump lengths and waiting times.
Continuous or discrete variable         
WIKIPEDIA ARTICLE COVERING MULTIPLE TOPICS
Discrete number; Discrete variable; Continuous variable; Continuous variables; Discrete variables; Continuous data; Discrete and continuous variables; Quantitative variable; Continuous and discrete variables; Continuous and discrete variable; Discrete value
In mathematics and statistics, a quantitative variable may be continuous or discrete if they are typically obtained by measuring or counting, respectively. If it can take on two particular real values such that it can also take on all real values between them (even values that are arbitrarily close together), the variable is continuous in that interval.
Static timing analysis         
SIMULATION TECHNIQUE IN COMPUTER HARDWARE DESIGN
Timing analysis; Fast model analysis; Slow model analysis
Static timing analysis (STA) is a simulation method of computing the expected timing of a synchronous digital circuit without requiring a simulation of the full circuit.

Википедия

Variable valve timing

In internal combustion engines, variable valve timing (VVT) is the process of altering the timing of a valve lift event, and is often used to improve performance, fuel economy or emissions. It is increasingly being used in combination with variable valve lift systems. There are many ways in which this can be achieved, ranging from mechanical devices to electro-hydraulic and camless systems. Increasingly strict emissions regulations are causing many automotive manufacturers to use VVT systems.

Two-stroke engines use a power valve system to get similar results to VVT.